Properties

Label 31.8.0.1
Base \(\Q_{31}\)
Degree \(8\)
e \(1\)
f \(8\)
c \(0\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 25 x^{3} + 12 x^{2} + 24 x + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{31}$
Degree $d$: $8$
Ramification exponent $e$: $1$
Residue field degree $f$: $8$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{31}(\sqrt{3})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 31 }) }$: $8$
This field is Galois and abelian over $\Q_{31}.$
Visible slopes:None

Intermediate fields

$\Q_{31}(\sqrt{3})$, 31.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:31.8.0.1 $\cong \Q_{31}(t)$ where $t$ is a root of \( x^{8} + 25 x^{3} + 12 x^{2} + 24 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 31 \) $\ \in\Q_{31}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:trivial
Wild inertia group:$C_1$
Unramified degree:$8$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{8} - x^{7} - 7 x^{6} + 6 x^{5} + 15 x^{4} - 10 x^{3} - 10 x^{2} + 4 x + 1$