Properties

Label 31.3.2.1
Base \(\Q_{31}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)
Galois group $C_3$ (as 3T1)

Related objects

Learn more about

Defining polynomial

\( x^{3} - 31 \)

Invariants

Base field: $\Q_{31}$
Degree $d$ : $3$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $2$
Discriminant root field: $\Q_{31}$
Root number: $1$
$|\Gal(K/\Q_{ 31 })|$: $3$
This field is Galois and abelian over $\Q_{31}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 31 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{31}$
Relative Eisenstein polynomial:\( x^{3} - 31 \)

Invariants of the Galois closure

Galois group:$C_3$ (as 3T1)
Inertia group:$C_3$
Unramified degree:$1$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:\( x^{3} - x^{2} - 10 x + 8 \)