Properties

Label 3.9.9.9
Base \(\Q_{3}\)
Degree \(9\)
e \(3\)
f \(3\)
c \(9\)
Galois group $(C_3^2:C_3):C_2$ (as 9T22)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 18 x^{5} + 27 x^{2} + 54 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $9$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $-i$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

3.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + 6 t x + 6 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3^3:C_6$ (as 9T22)
Inertia group:Intransitive group isomorphic to $C_3^3:C_2$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:[3/2, 3/2, 3/2]
Galois mean slope:$79/54$
Galois splitting model:$x^{9} - 7 x^{6} + 14 x^{3} - 7$