Properties

Label 3.9.12.3
Base \(\Q_{3}\)
Degree \(9\)
e \(3\)
f \(3\)
c \(12\)
Galois group $C_9$ (as 9T1)

Related objects

Learn more about

Defining polynomial

\( x^{9} + 6 x^{8} + 3 x^{6} + 9 x^{3} + 135 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $9$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $9$
This field is Galois and abelian over $\Q_{3}$.

Intermediate fields

3.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{3} + \left(3 t^{2} + 9 t\right) x^{2} + \left(9 t^{2} + 18 t + 18\right) x + 6 t^{2} + 6 t + 15 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_9$ (as 9T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$3$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$4/3$
Galois splitting model:$x^{9} - 57 x^{7} - 38 x^{6} + 855 x^{5} + 228 x^{4} - 4902 x^{3} + 1710 x^{2} + 9063 x - 7201$