Properties

Label 3.9.10.1
Base \(\Q_{3}\)
Degree \(9\)
e \(9\)
f \(1\)
c \(10\)
Galois group $C_3^2:Q_8$ (as 9T14)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 3 x^{2} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $9$
Ramification exponent $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[5/4, 5/4]$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 3 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{9} + 3 x^{2} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 1$
Associated inertia:$2$
Indices of inseparability:$[2, 2, 0]$

Invariants of the Galois closure

Galois group:$\PSU(3,2)$ (as 9T14)
Inertia group:$C_3^2:C_4$ (as 9T9)
Wild inertia group:$C_3^2$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:$[5/4, 5/4]$
Galois mean slope:$43/36$
Galois splitting model:$x^{9} - 3 x^{8} + 12 x^{7} - 12 x^{6} + 12 x^{5} - 12 x^{4} + 12 x^{3} - 12 x^{2} + 9 x - 3$