Properties

Label 3.8.6.3
Base \(\Q_{3}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_8:C_2$ (as 8T7)

Related objects

Learn more about

Defining polynomial

\( x^{8} - 3 x^{4} + 18 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 3 })|$: $4$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{4} - 3 t \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$OD_{16}$ (as 8T7)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$4$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:\( x^{8} - x^{7} + 2 x^{6} + 2 x^{5} - 5 x^{4} + 13 x^{3} - 13 x^{2} + x + 1 \)