Base \(\Q_{3}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(9\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} + 6 x^{4} + 3 \)


Base field: $\Q_{3}$
Degree $d$: $6$
Ramification exponent $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$|\Gal(K/\Q_{ 3 })|$: $6$
This field is Galois and abelian over $\Q_{3}.$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$,

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial:\( x^{6} + 6 x^{4} + 3 \)

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:$C_6$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:[2]
Galois mean slope:$3/2$
Galois splitting model:$x^{6} - x^{3} + 1$