Properties

Label 3.6.8.3
Base \(\Q_{3}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(8\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} + 18 x^{2} + 9 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $6$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $8$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 3 })|$: $6$
This field is Galois and abelian over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.3.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(15 t + 6\right) x^{2} + 9 x + 15 t + 6 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2]
Galois mean slope:$4/3$
Galois splitting model:$x^{6} + 9 x^{4} - 5 x^{3} + 36 x^{2} - 12 x + 8$