Properties

Label 3.6.6.2
Base \(\Q_{3}\)
Degree \(6\)
e \(3\)
f \(2\)
c \(6\)
Galois group $C_3^2:C_4$ (as 6T10)

Related objects

Learn more about

Defining polynomial

\( x^{6} + 6 x^{4} + 6 x^{3} + 18 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $6$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{3}$
Root number: $-1$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{*})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(6 t + 6\right) x^{2} + 6 t x + 3 t + 6 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3:S_3.C_2$ (as 6T10)
Inertia group:Intransitive group isomorphic to $C_3:S_3$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:[3/2, 3/2]
Galois mean slope:$25/18$
Galois splitting model:$x^{6} + 6 x^{4} - 2 x^{3} + 9 x^{2} - 6 x - 4$