Defining polynomial
\( x^{6} + 3 x^{5} - 2 \) |
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $6$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $6$ |
Discriminant root field: | $\Q_{3}$ |
Root number: | $-1$ |
$|\Aut(K/\Q_{ 3 })|$: | $1$ |
This field is not Galois over $\Q_{3}.$ |
Intermediate fields
$\Q_{3}(\sqrt{2})$ |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} - x + 2 \) |
Relative Eisenstein polynomial: | $ x^{3} + 6 x^{2} + 6 t x + 3 t \in\Q_{3}(t)[x]$ |
Invariants of the Galois closure
Galois group: | $C_3:S_3.C_2$ (as 6T10) |
Inertia group: | Intransitive group isomorphic to $C_3:S_3$ |
Unramified degree: | $2$ |
Tame degree: | $2$ |
Wild slopes: | [3/2, 3/2] |
Galois mean slope: | $25/18$ |
Galois splitting model: | $x^{6} - 6 x^{4} - 4 x^{3} + 9 x^{2} + 12 x - 16$ |