Properties

Label 3.6.3.2
Base \(\Q_{3}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more about

Defining polynomial

\( x^{6} - 9 x^{2} + 27 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $6$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $3$
Discriminant exponent $c$ : $3$
Discriminant root field: $\Q_{3}(\sqrt{3*})$
Root number: $-i$
$|\Gal(K/\Q_{ 3 })|$: $6$
This field is Galois and abelian over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{3*})$, 3.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + 6 t \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:\( x^{6} - x^{5} + 3 x^{4} + 5 x^{2} - 2 x + 1 \)