Properties

Label 3.15.15.52
Base \(\Q_{3}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(15\)
Galois group $C_3^4:(C_2\times F_5)$ (as 15T52)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 3 x^{2} + 6 x + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[11/10]$

Intermediate fields

3.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{15} + 3 x^{2} + 6 x + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z + 1$,$z^{12} + 2z^{9} + z^{6} + z^{3} + 2$
Associated inertia:$1$,$4$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_3^4:(C_2\times F_5)$ (as 15T52)
Inertia group:$C_3^4:C_{10}$ (as 15T33)
Wild inertia group:$C_3^4$
Unramified degree:$4$
Tame degree:$10$
Wild slopes:$[11/10, 11/10, 11/10, 11/10]$
Galois mean slope:$889/810$
Galois splitting model: $x^{15} - 12 x^{14} - 24 x^{13} + 685 x^{12} - 840 x^{11} - 11532 x^{10} + 42694 x^{9} + 27738 x^{8} - 582210 x^{7} + 1878920 x^{6} - 3095874 x^{5} + 2807568 x^{4} - 1382389 x^{3} + 614850 x^{2} - 552630 x + 256955$ Copy content Toggle raw display