Properties

Label 3.15.15.49
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(15\)
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} - 18 x^{14} + 87 x^{13} + 663 x^{12} + 7002 x^{11} + 59229 x^{10} + 24984 x^{9} + 28998 x^{8} + 14823 x^{7} + 8208 x^{6} + 729 x^{5} - 3969 x^{4} - 2997 x^{3} + 972 x^{2} + 1215 x + 243\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification exponent $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $15$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $5$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[3/2]$

Intermediate fields

3.3.3.2, 3.5.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.5.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t^{4} + 3 t^{3} + 6\right) x^{2} + 3 x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_5\times S_3$ (as 15T4)
Inertia group:Intransitive group isomorphic to $S_3$
Wild inertia group:$C_3$
Unramified degree:$5$
Tame degree:$2$
Wild slopes:$[3/2]$
Galois mean slope:$7/6$
Galois splitting model: $x^{15} - 3 x^{14} + 18 x^{13} - 13 x^{12} + 378 x^{11} - 678 x^{10} + 2363 x^{9} + 966 x^{8} + 9105 x^{7} - 9552 x^{6} + 5115 x^{5} + 291 x^{4} - 768 x^{3} + 63 x^{2} + 18 x - 1$ Copy content Toggle raw display