Properties

Label 3.12.18.62
Base \(\Q_{3}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(18\)
Galois group $C_3^2:C_{12}$ (as 12T73)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 6 x^{11} + 24 x^{10} + 42 x^{9} + 36 x^{8} + 18 x^{7} - 15 x^{6} + 54 x^{5} + 54 x^{4} - 72 x^{3} + 585\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $3$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + \left(3 t + 6\right) x^{5} + \left(3 t + 6\right) x^{4} + 3 x^{3} + 21 t + 9 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$2z^{2} + t + 1$,$z^{3} + 2$
Associated inertia:$1$,$1$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois group:$C_3^2:C_{12}$ (as 12T73)
Inertia group:Intransitive group isomorphic to $C_3^2:C_6$
Wild inertia group:$C_3^3$
Unramified degree:$2$
Tame degree:$2$
Wild slopes:$[3/2, 3/2, 2]$
Galois mean slope:$97/54$
Galois splitting model: $x^{12} - 84 x^{10} - 140 x^{9} + 4158 x^{8} + 252 x^{7} - 84154 x^{6} - 15876 x^{5} + 1566285 x^{4} - 3091312 x^{3} + 3313674 x^{2} - 30417828 x + 74869207$ Copy content Toggle raw display