Defining polynomial
\( x^{12} + 33 x^{11} + 81 x^{10} - 75 x^{9} - 81 x^{8} + 81 x^{7} - 54 x^{6} + 54 x^{5} + 81 x^{4} + 81 x^{3} + 81 x^{2} + 81 x - 81 \) |
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $12$ |
Ramification exponent $e$: | $3$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $12$ |
Discriminant root field: | $\Q_{3}$ |
Root number: | $1$ |
$|\Aut(K/\Q_{ 3 })|$: | $1$ |
This field is not Galois over $\Q_{3}.$ |
Intermediate fields
$\Q_{3}(\sqrt{2})$, 3.4.0.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | 3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \) |
Relative Eisenstein polynomial: | $ x^{3} + \left(3 t^{2} + 3 t\right) x^{2} + \left(3 t^{3} - 3 t^{2}\right) x - 3 t^{3} - 3 t^{2} \in\Q_{3}(t)[x]$ |
Invariants of the Galois closure
Galois group: | 12T173 |
Inertia group: | Intransitive group isomorphic to $C_3:(C_3^3:C_2)$ |
Unramified degree: | $4$ |
Tame degree: | $2$ |
Wild slopes: | [3/2, 3/2, 3/2, 3/2] |
Galois mean slope: | $241/162$ |
Galois splitting model: | $x^{12} - 12 x^{10} - 8 x^{9} + 54 x^{8} + 72 x^{7} - 135 x^{6} - 216 x^{5} + 243 x^{4} + 252 x^{3} - 243 x^{2} - 108 x + 101$ |