Properties

Label 3.12.12.18
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(12\)
Galois group $F_9$ (as 12T46)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 42 x^{11} - 48 x^{10} - 114 x^{9} - 99 x^{8} - 54 x^{7} - 90 x^{6} - 108 x^{5} + 27 x^{4} - 27 x^{3} + 81 x^{2} + 81 x - 81 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{3}$
Root number: $1$
$|\Aut(K/\Q_{ 3 })|$: $1$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(-3 t^{3} - 3 t^{2} + 3 t\right) x^{2} - 3 t x + 3 t^{3} - 3 t^{2} + 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$F_9$ (as 12T46)
Inertia group:Intransitive group isomorphic to $C_3:S_3$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:[3/2, 3/2]
Galois mean slope:$25/18$
Galois splitting model:$x^{12} + 12 x^{10} - 2 x^{9} + 54 x^{8} - 18 x^{7} + 67 x^{6} - 54 x^{5} - 165 x^{4} + 56 x^{3} - 369 x^{2} + 330 x + 101$