Properties

Label 3.12.12.12
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(12\)
Galois group $C_2\times C_3:S_3.C_2$ (as 12T41)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 165 x^{10} - 312 x^{9} - 288 x^{8} - 180 x^{7} - 36 x^{6} - 135 x^{5} - 243 x^{4} + 54 x^{3} + 81 x^{2} + 81 x - 162 \)

Invariants

Base field: $\Q_{3}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{3}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 3 })|$: $2$
This field is not Galois over $\Q_{3}$.

Intermediate fields

$\Q_{3}(\sqrt{*})$, 3.4.0.1, 3.6.6.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} - x + 2 \)
Relative Eisenstein polynomial:$ x^{3} + \left(3 t^{3} - 3 t\right) x^{2} + \left(3 t^{3} - 3 t^{2} - 3 t + 3\right) x + 3 t^{3} - 3 t^{2} - 3 t + 3 \in\Q_{3}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2\times C_3:S_3.C_2$ (as 12T41)
Inertia group:Intransitive group isomorphic to $C_3:S_3$
Unramified degree:$4$
Tame degree:$2$
Wild slopes:[3/2, 3/2]
Galois mean slope:$25/18$
Galois splitting model:$x^{12} - 4 x^{9} - 6 x^{6} + 4 x^{3} + 1$