Properties

Label 23.12.6.2
Base \(\Q_{23}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(6\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 6436343 x^{2} + 2220538335 \)

Invariants

Base field: $\Q_{23}$
Degree $d$: $12$
Ramification exponent $e$: $2$
Residue field degree $f$: $6$
Discriminant exponent $c$: $6$
Discriminant root field: $\Q_{23}(\sqrt{*})$
Root number: $-1$
$|\Gal(K/\Q_{ 23 })|$: $12$
This field is Galois and abelian over $\Q_{23}.$

Intermediate fields

$\Q_{23}(\sqrt{*})$, 23.3.0.1, 23.4.2.2, 23.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:23.6.0.1 $\cong \Q_{23}(t)$ where $t$ is a root of \( x^{6} - x + 15 \)
Relative Eisenstein polynomial:$ x^{2} - 23 t \in\Q_{23}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_2$
Unramified degree:$6$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:Not computed