Properties

Label 2.8.31.5
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(31\)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 34\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $31$
Discriminant root field: $\Q_{2}(\sqrt{2})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $8$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:$[3, 4, 5]$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.4.11.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 8 x^{6} + 16 x^{5} + 4 x^{4} + 34 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{4} + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[24, 16, 8, 0]$

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:$C_8$ (as 8T1)
Wild inertia group:$C_8$
Unramified degree:$1$
Tame degree:$1$
Wild slopes:$[3, 4, 5]$
Galois mean slope:$31/8$
Galois splitting model:$x^{8} + 24 x^{6} + 180 x^{4} + 432 x^{2} + 162$