Properties

Label 2.8.22.99
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(22\)
Galois group $D_4\times C_2$ (as 8T9)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{4} + 12 x^{2} + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 3, 7/2]$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.4.8.3, 2.4.10.3, 2.4.10.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{4} + 12 x^{2} + 14 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$,$z^{4} + 1$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[15, 10, 4, 0]$

Invariants of the Galois closure

Galois group:$C_2\times D_4$ (as 8T9)
Inertia group:$D_4$ (as 8T4)
Wild inertia group:$D_4$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2, 3, 7/2]$
Galois mean slope:$11/4$
Galois splitting model:$x^{8} - 8 x^{6} - 10 x^{4} + 8 x^{2} + 1$