Properties

Label 2.8.20.1
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(20\)
Galois group $D_4\times C_2$ (as 8T9)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 8 x^{7} + 36 x^{6} + 80 x^{5} + 104 x^{4} - 32 x^{3} - 8 x^{2} + 124\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 7/2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{2})$, $\Q_{2}(\sqrt{2\cdot 5})$, 2.4.6.1, 2.4.10.3, 2.4.10.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 4 x^{3} + \left(4 t + 12\right) x^{2} + 12 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[7, 4, 0]$

Invariants of the Galois closure

Galois group:$C_2\times D_4$ (as 8T9)
Inertia group:Intransitive group isomorphic to $D_4$
Wild inertia group:$D_4$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:$[2, 3, 7/2]$
Galois mean slope:$11/4$
Galois splitting model:$x^{8} - 2 x^{6} + 5 x^{4} + 2 x^{2} + 1$