Properties

Label 2.8.16.36
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(16\)
Galois group $C_8:C_2$ (as 8T7)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 4 x^{6} + 20 x^{4} + 208 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.4.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{4} + \left(4 t + 4\right) x^{3} + \left(14 t + 4\right) x^{2} + \left(4 t + 12\right) x + 10 t + 10 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$OD_{16}$ (as 8T7)
Inertia group:Intransitive group isomorphic to $C_2\times C_4$
Unramified degree:$2$
Tame degree:$1$
Wild slopes:[2, 3, 3]
Galois mean slope:$5/2$
Galois splitting model:\( x^{8} - 15 x^{4} + 10 x^{2} + 5 \)