Properties

Label 2.8.12.23
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(12\)
Galois group $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} - 2 x^{7} + 8 x^{6} - 4 x^{5} + 8 x^{4} - 4 x^{3} + 8 x^{2} + 4\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.4.4.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 2 t x^{3} + 2 x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + z + t$
Associated inertia:$2$
Indices of inseparability:$[3, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2\wr C_4$ (as 8T28)
Inertia group:Intransitive group isomorphic to $C_2^4$
Wild inertia group:$C_2^4$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:$[2, 2, 2, 2]$
Galois mean slope:$15/8$
Galois splitting model:$x^{8} - 2 x^{7} + 2 x^{6} + 16 x^{5} - 41 x^{4} + 44 x^{3} - 28 x^{2} + 2 x + 1$