Properties

Label 2.8.12.17
Base \(\Q_{2}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(12\)
Galois group $C_2^4:C_6$ (as 8T33)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 4 x^{7} + 6 x^{6} + 4 x^{5} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 4\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $1$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 2 x^{3} + \left(2 t + 2\right) x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + (t + 1)z + 1$
Associated inertia:$3$
Indices of inseparability:$[3, 2, 0]$

Invariants of the Galois closure

Galois group:$C_2^3:A_4$ (as 8T33)
Inertia group:Intransitive group isomorphic to $C_2^4$
Wild inertia group:$C_2^4$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2, 2, 2, 2]$
Galois mean slope:$15/8$
Galois splitting model:$x^{8} - 4 x^{7} + 6 x^{6} - 2 x^{5} - 15 x^{4} + 26 x^{3} - 24 x^{2} + 14 x - 3$