Properties

Label 2.3.2.1
Base \(\Q_{2}\)
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)
Galois group $S_3$ (as 3T2)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{3} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $3$
Ramification exponent $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $1$
This field is not Galois over $\Q_{2}.$
Visible slopes:None

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{3} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + z + 1$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$S_3$ (as 3T2)
Inertia group:$C_3$ (as 3T1)
Wild inertia group:$C_1$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:$x^{3} - 2$