Properties

Label 2.2.0.1
Base \(\Q_{2}\)
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)
Galois group $C_2$

Related objects

Learn more about

Defining polynomial

\( x^{2} - x + 1 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $2$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 2 })|$: $2$
This field is Galois and abelian over $\Q_{2}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x - 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$C_2$
Inertia group:Trivial
Unramified degree:$2$
Tame degree:$1$
Wild slopes:None
Galois Mean Slope:$0$
Global Splitting Model:\( x^{2} - x + 1 \)