Properties

Label 2.15.14.1
Base \(\Q_{2}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(14\)
Galois group $C_{15} : C_4$ (as 15T6)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 2\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $15$
Ramification exponent $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $1$
This field is not Galois over $\Q_{2}.$
Visible slopes:None

Intermediate fields

2.3.2.1, 2.5.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{15} + 2 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{14} + z^{13} + z^{12} + z^{11} + z^{10} + z^{9} + z^{8} + z^{7} + z^{6} + z^{5} + z^{4} + z^{3} + z^{2} + z + 1$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_{15}:C_4$ (as 15T6)
Inertia group:$C_{15}$ (as 15T1)
Wild inertia group:$C_1$
Unramified degree:$4$
Tame degree:$15$
Wild slopes:None
Galois mean slope:$14/15$
Galois splitting model:Not computed