Properties

Label 2.13.12.1
Base \(\Q_{2}\)
Degree \(13\)
e \(13\)
f \(1\)
c \(12\)
Galois group $F_{13}$ (as 13T6)

Related objects

Learn more about

Defining polynomial

\( x^{13} - 2 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $13$
Ramification exponent $e$ : $13$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 2 })|$: $1$
This field is not Galois over $\Q_{2}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 2 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial:\( x^{13} - 2 \)

Invariants of the Galois closure

Galois group:$F_{13}$ (as 13T6)
Inertia group:$C_{13}$
Unramified degree:$12$
Tame degree:$13$
Wild slopes:None
Galois mean slope:$12/13$
Galois splitting model:$x^{13} - 13 x^{12} + 78 x^{11} - 286 x^{10} + 715 x^{9} - 1287 x^{8} + 1716 x^{7} - 1716 x^{6} + 1287 x^{5} - 715 x^{4} + 286 x^{3} - 78 x^{2} + 13 x - 3$