Properties

Label 2.12.16.16
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(16\)
Galois group 12T30

Related objects

Learn more about

Defining polynomial

\( x^{12} - 54 x^{10} - 509 x^{8} - 964 x^{6} - 777 x^{4} - 934 x^{2} + 357 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $4$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.2.1 x3, 2.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{6} + 4 x^{5} + 4 x^{4} - 2 x^{3} - 2 x^{2} + 4 t x + 4 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:12T30
Inertia group:Intransitive group isomorphic to $C_2\times A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2]
Galois mean slope:$19/12$
Global splitting model:\( x^{12} - 4 x^{11} + 9 x^{10} + 2 x^{9} - 42 x^{8} + 112 x^{7} - 99 x^{6} - 84 x^{5} + 366 x^{4} - 314 x^{3} + 137 x^{2} - 16 x - 1 \)