Properties

Label 2.12.16.15
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(16\)
Galois group $\GL(2,Z/4)$ (as 12T50)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 71 x^{8} + 123 x^{4} - 245 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $16$
Discriminant root field: $\Q_{2}(\sqrt{-*})$
Root number: $-1$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.2.1 x3, 2.6.4.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{*})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} - x + 1 \)
Relative Eisenstein polynomial:$ x^{6} + \left(-2 t - 2\right) x^{5} + 2 t x^{4} + \left(-2 t + 2\right) x^{3} + \left(4 t + 4\right) x^{2} + 4 x - 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:$\GL(2,Z/4)$ (as 12T50)
Inertia group:Intransitive group isomorphic to $C_2^2\times A_4$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:[4/3, 4/3, 2, 2]
Galois mean slope:$43/24$
Galois splitting model:\( x^{12} - 4 x^{11} + 13 x^{10} - 28 x^{9} + 50 x^{8} - 70 x^{7} + 71 x^{6} - 42 x^{5} + 6 x^{4} + 10 x^{3} - 7 x^{2} + 1 \)