Properties

Label 2.12.12.5
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(12\)
Galois group $D_4\times A_4$ (as 12T51)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 4 x^{11} + 24 x^{10} - 8 x^{9} + 140 x^{8} - 1488 x^{7} + 832 x^{6} - 10208 x^{5} + 20336 x^{4} + 12160 x^{3} + 113280 x^{2} + 139520 x + 45376\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $2$
Residue field degree $f$: $6$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.0.1, 2.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} + x^{4} + x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 2 t^{4} x + 4 t^{5} + 4 t^{4} + 4 t^{2} + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + t^{4}$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$D_4\times A_4$ (as 12T51)
Inertia group:Intransitive group isomorphic to $C_2^4$
Wild inertia group:$C_2^4$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2, 2, 2, 2]$
Galois mean slope:$15/8$
Galois splitting model:$x^{12} - 4 x^{10} - 2 x^{8} + 9 x^{6} + 2 x^{4} - 4 x^{2} - 1$