Properties

Label 2.12.12.33
Base \(\Q_{2}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(12\)
Galois group $C_3\times S_4$ (as 12T45)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 2 x^{10} + 6 x^{9} + 6 x^{8} + 8 x^{7} + 28 x^{6} + 24 x^{5} + 20 x^{4} + 24 x^{3} + 32 x^{2} + 24 x + 8\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $3$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[4/3, 4/3]$

Intermediate fields

2.3.0.1, 2.4.4.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.3.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + \left(2 t^{2} + 2\right) x^{2} + 2 x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 1, 0]$

Invariants of the Galois closure

Galois group:$C_3\times S_4$ (as 12T45)
Inertia group:Intransitive group isomorphic to $A_4$
Wild inertia group:$C_2^2$
Unramified degree:$6$
Tame degree:$3$
Wild slopes:$[4/3, 4/3]$
Galois mean slope:$7/6$
Galois splitting model: $x^{12} - 4 x^{9} + 54 x^{8} - 54 x^{7} + 122 x^{6} - 72 x^{5} + 93 x^{4} - 48 x^{3} + 18 x^{2} + 1$ Copy content Toggle raw display