Properties

Label 2.12.12.28
Base \(\Q_{2}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(12\)
Galois group $S_4$ (as 12T9)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 130 x^{7} + 159 x^{6} + 132 x^{5} + 10 x^{4} - 100 x^{3} - 53 x^{2} + 22 x + 19\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $6$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[4/3]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.2.1 x3, 2.6.4.1, 2.6.6.7, 2.6.6.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 2 x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$,$z^{4} + z^{2} + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$S_4$ (as 12T9)
Inertia group:Intransitive group isomorphic to $A_4$
Wild inertia group:$C_2^2$
Unramified degree:$2$
Tame degree:$3$
Wild slopes:$[4/3, 4/3]$
Galois mean slope:$7/6$
Galois splitting model: $x^{12} - 4 x^{11} + x^{10} + 14 x^{9} - 14 x^{8} - 10 x^{7} + 25 x^{6} - 10 x^{5} - 14 x^{4} + 14 x^{3} + x^{2} - 4 x + 1$ Copy content Toggle raw display