Properties

Label 2.12.12.25
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(12\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $12$
Ramification exponent $e$: $2$
Residue field degree $f$: $6$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{2}(\sqrt{5})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 2 }) }$: $12$
This field is Galois and abelian over $\Q_{2}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.3.0.1, 2.4.4.2, 2.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} + x^{4} + x^{3} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 2 x + 4 t^{4} + 4 t^{3} + 4 t^{2} + 4 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_2$
Unramified degree:$6$
Tame degree:$1$
Wild slopes:$[2]$
Galois mean slope:$1$
Galois splitting model:$x^{12} - 4 x^{11} - 17 x^{10} + 74 x^{9} + 74 x^{8} - 412 x^{7} - 23 x^{6} + 734 x^{5} - 175 x^{4} - 324 x^{3} + 90 x^{2} + 22 x + 1$