Properties

Label 2.12.12.19
Base \(\Q_{2}\)
Degree \(12\)
e \(2\)
f \(6\)
c \(12\)
Galois group 12T105

Related objects

Learn more about

Defining polynomial

\( x^{12} - 6 x^{10} + 27 x^{8} - 4 x^{6} + 7 x^{4} + 10 x^{2} + 29 \)

Invariants

Base field: $\Q_{2}$
Degree $d$ : $12$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $6$
Discriminant exponent $c$ : $12$
Discriminant root field: $\Q_{2}(\sqrt{*})$
Root number: $i$
$|\Aut(K/\Q_{ 2 })|$: $2$
This field is not Galois over $\Q_{2}$.

Intermediate fields

$\Q_{2}(\sqrt{*})$, 2.3.0.1, 2.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:2.6.0.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{6} - x + 1 \)
Relative Eisenstein polynomial:$ x^{2} + \left(2 t^{5} + 2 t^{4} + 2 t + 2\right) x + 2 t^{5} + 2 t^{4} + 2 t + 2 \in\Q_{2}(t)[x]$

Invariants of the Galois closure

Galois group:12T105
Inertia group:Intransitive group isomorphic to $C_2^4$
Unramified degree:$12$
Tame degree:$1$
Wild slopes:[2, 2, 2, 2]
Galois mean slope:$15/8$
Galois splitting model:\( x^{12} - 13 x^{8} - 13 x^{6} + 26 x^{4} + 39 x^{2} + 13 \)