Properties

Label 19.8.6.1
Base \(\Q_{19}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $Q_8$ (as 8T5)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 57 x^{4} + 1444 \)

Invariants

Base field: $\Q_{19}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{19}$
Root number: $1$
$|\Gal(K/\Q_{ 19 })|$: $8$
This field is Galois over $\Q_{19}$.

Intermediate fields

$\Q_{19}(\sqrt{*})$, $\Q_{19}(\sqrt{19})$, $\Q_{19}(\sqrt{19*})$, 19.4.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{19}(\sqrt{*})$ $\cong \Q_{19}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{4} - 19 t^{2} \in\Q_{19}(t)[x]$

Invariants of the Galois closure

Galois group:$Q_8$ (as 8T5)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:Not computed