Properties

Label 19.12.0.1
Base \(\Q_{19}\)
Degree \(12\)
e \(1\)
f \(12\)
c \(0\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} - x + 15 \)

Invariants

Base field: $\Q_{19}$
Degree $d$ : $12$
Ramification exponent $e$ : $1$
Residue field degree $f$ : $12$
Discriminant exponent $c$ : $0$
Discriminant root field: $\Q_{19}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 19 })|$: $12$
This field is Galois and abelian over $\Q_{19}$.

Intermediate fields

$\Q_{19}(\sqrt{*})$, 19.3.0.1, 19.4.0.1, 19.6.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:19.12.0.1 $\cong \Q_{19}(t)$ where $t$ is a root of \( x^{12} - x + 15 \)
Relative Eisenstein polynomial:$ x - 19 \in\Q_{19}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Trivial
Unramified degree:$12$
Tame degree:$1$
Wild slopes:None
Galois mean slope:$0$
Galois splitting model:$x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$