Base \(\Q_{17}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(8\)
Galois group $C_3\times (C_3 : C_4)$ (as 12T19)

Related objects

Learn more about

Defining polynomial

\( x^{12} - 4913 x^{3} + 918731 \)


Base field: $\Q_{17}$
Degree $d$ : $12$
Ramification exponent $e$ : $3$
Residue field degree $f$ : $4$
Discriminant exponent $c$ : $8$
Discriminant root field: $\Q_{17}(\sqrt{*})$
Root number: $1$
$|\Aut(K/\Q_{ 17 })|$: $6$
This field is not Galois over $\Q_{17}$.

Intermediate fields


Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield: $\cong \Q_{17}(t)$ where $t$ is a root of \( x^{4} - x + 11 \)
Relative Eisenstein polynomial:$ x^{3} - 17 t \in\Q_{17}(t)[x]$

Invariants of the Galois closure

Galois group:$C_3\times C_3:C_4$ (as 12T19)
Inertia group:Intransitive group isomorphic to $C_3$
Unramified degree:$12$
Tame degree:$3$
Wild slopes:None
Galois mean slope:$2/3$
Galois splitting model:Not computed