Properties

Label 13.8.6.4
Base \(\Q_{13}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_8$ (as 8T1)

Related objects

Learn more about

Defining polynomial

\( x^{8} - 13 x^{4} + 338 \)

Invariants

Base field: $\Q_{13}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{13}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 13 })|$: $8$
This field is Galois and abelian over $\Q_{13}$.

Intermediate fields

$\Q_{13}(\sqrt{*})$, 13.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{13}(\sqrt{*})$ $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{4} - 13 t \in\Q_{13}(t)[x]$

Invariants of the Galois closure

Galois group:$C_8$ (as 8T1)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{8} - x^{7} - 202 x^{6} - 298 x^{5} + 11401 x^{4} + 35231 x^{3} - 125184 x^{2} - 387700 x + 204608$