Properties

Label 13.6.5.3
Base \(\Q_{13}\)
Degree \(6\)
e \(6\)
f \(1\)
c \(5\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 39\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $6$
Ramification exponent $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $5$
Discriminant root field: $\Q_{13}(\sqrt{13})$
Root number: $1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $6$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

$\Q_{13}(\sqrt{13})$, 13.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{13}$
Relative Eisenstein polynomial: \( x^{6} + 39 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{5} + 6z^{4} + 2z^{3} + 7z^{2} + 2z + 6$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:$C_6$ (as 6T1)
Wild inertia group:$C_1$
Unramified degree:$1$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{6} - 39 x^{4} - 26 x^{3} + 351 x^{2} + 234 x - 468$