Properties

Label 13.13.21.11
Base \(\Q_{13}\)
Degree \(13\)
e \(13\)
f \(1\)
c \(21\)
Galois group $F_{13}$

Related objects

Learn more about

Defining polynomial

\( x^{13} + 91 x^{9} + 13 \)

Invariants

Base field: $\Q_{ 13 }$
Degree $d$ : $13$
Ramification exponent $e$ : $13$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $21$
Discriminant root field: $\Q_{13}(\sqrt{13*})$
Root number: $1$
$|\Aut(K/\Q_{ 13 })|$: $1$
This field is not Galois over $\Q_{13}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 13 }$.

Unramified/totally ramified tower

Unramified subfield:\( t + 2 \)
Relative Eisenstein polynomial:\( y^{13} + 91 y^{9} + 13 \)

Invariants of the Galois closure

Galois group:$F_{13}$
Inertia group:$C_{13}:C_4$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:[7/4]
Galois Mean Slope:$87/52$
Galois Splitting Model:Not computed