Properties

Label 13.12.9.2
Base \(\Q_{13}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 8 x^{10} + 44 x^{9} + 63 x^{8} + 264 x^{7} + 550 x^{6} - 6336 x^{5} + 3843 x^{4} + 4532 x^{3} + 46454 x^{2} + 30668 x + 30982\) Copy content Toggle raw display

Invariants

Base field: $\Q_{13}$
Degree $d$: $12$
Ramification exponent $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{13}(\sqrt{13})$
Root number: $-1$
$\card{ \Gal(K/\Q_{ 13 }) }$: $12$
This field is Galois and abelian over $\Q_{13}.$
Visible slopes:None

Intermediate fields

$\Q_{13}(\sqrt{13})$, 13.3.0.1, 13.4.3.2, 13.6.3.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:13.3.0.1 $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{3} + 2 x + 11 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 13 \) $\ \in\Q_{13}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{3} + 4z^{2} + 6z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_4$
Wild inertia group:$C_1$
Unramified degree:$3$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{12} - 3 x^{11} - 3 x^{10} + 25 x^{9} + 3 x^{8} + 30 x^{7} + 140 x^{6} - 60 x^{5} + 348 x^{4} - 286 x^{3} - 822 x^{2} + 567 x + 1569$