Properties

Label 13.12.10.5
Base \(\Q_{13}\)
Degree \(12\)
e \(6\)
f \(2\)
c \(10\)
Galois group $C_{12}$ (as 12T1)

Related objects

Learn more about

Defining polynomial

\( x^{12} + 65 x^{6} + 1352 \)

Invariants

Base field: $\Q_{13}$
Degree $d$ : $12$
Ramification exponent $e$ : $6$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $10$
Discriminant root field: $\Q_{13}(\sqrt{*})$
Root number: $1$
$|\Gal(K/\Q_{ 13 })|$: $12$
This field is Galois and abelian over $\Q_{13}$.

Intermediate fields

$\Q_{13}(\sqrt{*})$, 13.3.2.2, 13.4.2.2, 13.6.4.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{13}(\sqrt{*})$ $\cong \Q_{13}(t)$ where $t$ is a root of \( x^{2} - x + 2 \)
Relative Eisenstein polynomial:$ x^{6} - 13 t^{3} \in\Q_{13}(t)[x]$

Invariants of the Galois closure

Galois group:$C_{12}$ (as 12T1)
Inertia group:Intransitive group isomorphic to $C_6$
Unramified degree:$2$
Tame degree:$6$
Wild slopes:None
Galois mean slope:$5/6$
Galois splitting model:$x^{12} - x^{11} + 10 x^{10} - 15 x^{9} + x^{8} - 55 x^{7} + 24 x^{6} + 155 x^{5} + 471 x^{4} + 505 x^{3} + 415 x^{2} + 309 x + 521$