Properties

Label 11.8.6.3
Base \(\Q_{11}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $C_8:C_2$ (as 8T7)

Related objects

Learn more about

Defining polynomial

\( x^{8} - 11 x^{4} + 847 \)

Invariants

Base field: $\Q_{11}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{11}(\sqrt{*})$
Root number: $-1$
$|\Aut(K/\Q_{ 11 })|$: $4$
This field is not Galois over $\Q_{11}$.

Intermediate fields

$\Q_{11}(\sqrt{*})$, 11.4.2.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{11}(\sqrt{*})$ $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{2} - x + 7 \)
Relative Eisenstein polynomial:$ x^{4} - 11 t \in\Q_{11}(t)[x]$

Invariants of the Galois closure

Galois group:$OD_{16}$ (as 8T7)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$4$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{8} - 4 x^{7} + 7 x^{6} - 7 x^{5} - 371 x^{4} + 749 x^{3} - 366 x^{2} - 9 x + 81$