Properties

Label 11.8.6.1
Base \(\Q_{11}\)
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)
Galois group $Q_8$ (as 8T5)

Related objects

Learn more about

Defining polynomial

\( x^{8} + 143 x^{4} + 5929 \)

Invariants

Base field: $\Q_{11}$
Degree $d$ : $8$
Ramification exponent $e$ : $4$
Residue field degree $f$ : $2$
Discriminant exponent $c$ : $6$
Discriminant root field: $\Q_{11}$
Root number: $1$
$|\Gal(K/\Q_{ 11 })|$: $8$
This field is Galois over $\Q_{11}$.

Intermediate fields

$\Q_{11}(\sqrt{*})$, $\Q_{11}(\sqrt{11})$, $\Q_{11}(\sqrt{11*})$, 11.4.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{11}(\sqrt{*})$ $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{2} - x + 7 \)
Relative Eisenstein polynomial:$ x^{4} - 11 t^{2} \in\Q_{11}(t)[x]$

Invariants of the Galois closure

Galois group:$Q_8$ (as 8T5)
Inertia group:Intransitive group isomorphic to $C_4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:None
Galois mean slope:$3/4$
Galois splitting model:$x^{8} + 44 x^{6} + 308 x^{4} + 484 x^{2} + 121$