Properties

Label 11.10.9.6
Base \(\Q_{11}\)
Degree \(10\)
e \(10\)
f \(1\)
c \(9\)
Galois group $C_{10}$ (as 10T1)

Related objects

Learn more about

Defining polynomial

\( x^{10} + 216513 \)

Invariants

Base field: $\Q_{11}$
Degree $d$ : $10$
Ramification exponent $e$ : $10$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $9$
Discriminant root field: $\Q_{11}(\sqrt{11*})$
Root number: $i$
$|\Gal(K/\Q_{ 11 })|$: $10$
This field is Galois and abelian over $\Q_{11}$.

Intermediate fields

$\Q_{11}(\sqrt{11*})$, 11.5.4.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial:\( x^{10} + 216513 \)

Invariants of the Galois closure

Galois group:$C_{10}$ (as 10T1)
Inertia group:$C_{10}$
Unramified degree:$1$
Tame degree:$10$
Wild slopes:None
Galois mean slope:$9/10$
Galois splitting model:$x^{10} - 165 x^{7} + 495 x^{6} - 6644 x^{5} + 26675 x^{4} - 88330 x^{3} + 434775 x^{2} - 585915 x + 2603843$