Properties

Label 101.2.1.1
Base \(\Q_{101}\)
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)
Galois group $C_2$ (as 2T1)

Related objects

Learn more about

Defining polynomial

\( x^{2} - 101 \)

Invariants

Base field: $\Q_{101}$
Degree $d$ : $2$
Ramification exponent $e$ : $2$
Residue field degree $f$ : $1$
Discriminant exponent $c$ : $1$
Discriminant root field: $\Q_{101}(\sqrt{101})$
Root number: $1$
$|\Gal(K/\Q_{ 101 })|$: $2$
This field is Galois and abelian over $\Q_{101}$.

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 101 }$.

Unramified/totally ramified tower

Unramified subfield:$\Q_{101}$
Relative Eisenstein polynomial:\( x^{2} - 101 \)

Invariants of the Galois closure

Galois group:$C_2$ (as 2T1)
Inertia group:$C_2$
Unramified degree:$1$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:\( x^{2} - 4 x - 97 \)