Given an L-function of an elliptic curve of conductor $N$, the symmetric $n$-th power L-function is defined by the Euler product \[ L(s,E,\text{sym}^n)=\prod_{p\nmid N} \prod_{j=0}^n \left(1 - \frac{\alpha_p^{j} \beta^{n-j}_p}{p^s} \right)^{-1} \times \prod_{p|N} L_p(s) \]

Examples of symmetric square L-functions attached to isogeny classes of elliptic curves
11.a 14.a 15.a 17.a 19.a 20.a 21.a 24.a 26.a 26.b