Properties

Degree 5
Conductor $ 3^{4} \cdot 17^{4} $
Sign $1$
Motivic weight 4
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{4})$  = 1  + 2-s + 0.111·3-s + 3·4-s − 1.15·5-s + 0.111·6-s − 0.632·7-s + 3·8-s + 0.0123·9-s − 1.15·10-s − 0.785·11-s + 0.333·12-s + 0.775·13-s − 0.632·14-s − 0.128·15-s + 6·16-s + 0.00346·17-s + 0.0123·18-s + 0.844·19-s − 3.47·20-s − 0.0702·21-s − 0.785·22-s + 2.83·23-s + 0.333·24-s + 1.11·25-s + 0.775·26-s + 0.00137·27-s − 1.89·28-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{4})=\mathstrut & 6765201 ^{s/2} \, \Gamma_{\R}(s) \, \Gamma_{\C}(s+2) \, \Gamma_{\C}(s+1) \, L(s, E, \mathrm{sym}^{4})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{4}) \end{aligned} \]

Invariants

\( d \)  =  \(5\)
\( N \)  =  \(6765201\)    =    \(3^{4} \cdot 17^{4}\)
\( \varepsilon \)  =  $1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(5,\ 6765201,\ (0:2.0, 1.0),\ 1)$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{4}) = (1-3^{- s})^{-1}(1-17^{- s})^{-1}\prod_{p \nmid 51 }\prod_{j=0}^{4} \left(1- \frac{\alpha_p^j\beta_p^{4-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.