Properties

Degree 4
Conductor $ 5077^{3} $
Sign $-1$
Motivic weight 3
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  − 1.73·3-s − 2.14·5-s − 0.431·7-s + 9-s − 2.30·11-s + 0.853·13-s + 3.71·15-s − 16-s + 1.02·17-s − 0.929·19-s + 0.748·21-s + 0.543·23-s + 1.96·25-s + 0.845·29-s + 0.672·31-s + 3.98·33-s + 0.927·35-s − 1.47·39-s + 0.624·43-s − 2.14·45-s + 0.363·47-s + 1.73·48-s − 0.180·49-s − 1.77·51-s + 0.583·53-s + 4.94·55-s + 1.61·57-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s,E,\mathrm{sym}^{3})=\mathstrut &\left(5077^{3}\right)^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & -\,\Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned} \]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(5077^{3}\)
\( \varepsilon \)  =  $-1$
primitive  :  yes
self-dual  :  yes
Selberg data  =  $(4,\ 5077^{3} ,\ ( \ : 1.5, 0.5 ),\ -1 )$

Euler product

\[\begin{aligned} L(s, E, \mathrm{sym}^{3}) = (1+5077^{ -s})^{-1}\prod_{p \nmid 5077 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1} \end{aligned}\]

Particular Values

L(1/2): not computed L(1): not computed

Imaginary part of the first few zeros on the critical line

Zeros not available.

Graph of the $Z$-function along the critical line

Plot not available.